

Reliability Analysis of Wind Turbine Blades Considering Lightning Strike

Weifei Hu^{*}, <u>Wentao Zhao (Presenter)</u>, Z. Liu, J. Tan School of Mechanical Engineering, Zhejiang University, Hangzhou, China *weifeihu@zju.edu.cn

Yeqing Wang Department of Aerospace Engineering, Mississippi State University, Mississippi State, MS, USA

> NAWEA/WindTech 2019 Conference October 15, 2019 University of Massachusetts Amherst, Amherst, Massachusetts

Background & Motivation

Lightning struck the blade tip. Information found online.

- Lightning strike damage accounts for $\sim 23.4\%$ of wind turbine failure.
- Lightning strike protection cannot 100% prevent lightning damage;
- An accurate evaluation of wind turbines' reliability considering lightning strike is of critical importance.

Zhejiang University

Overview

Root

Composite Materials «

- Tip Aft Shear Web Spar Cap **Forward Shear Web Trailing Edge** Leading Edge 50 m
- Parametric lightning stepped leader model
- Problem set up in COMSOL
- Reliability Analysis of Composite Wind Turbine Blades
- Design Optimization Considering Lightning Strike Damage

Straight Lightning Stepped Leader Model

• Lightning-strike-induced electric field calculation by finite element models.

The Real Lightning Leader

Artificial Lightning Arc Channel (High Voltage Lab at Mississippi State University)

Lightning in the Nature (Picture found online)

- Both the natural and artificial lightning channels show strong tortuosity.
- Fifty percent of the discharges exist two or three branches, and only twelve percent do not show any branch.

Parametric Lightning Stepped Leader Model

- The azimuthal angle θ in the spherical coordinate follows uniformly distribution;
- The angle between two adjacent line segments φ follows a Gaussian distribution;
- The length of each segment follows a uniform distribution from 80m to 100m.

Problem Setup in COMSOL

• The random generation procedure is terminated when the distance between the tip of the tortuous channel and the ground structure becomes smaller than the striking distance

Electric field due to **tortuous lightning leader model** calculation setup in COMSOL Multiphysics

- The generation of branches keep same;
- The upper bifurcation happens at the height near 2500m;
- The lower bifurcation occurs at the height approaching 1500m.

Estimation of the Electric Field

• Electric field magnitude distribution in the vicinity of wind turbine.

FEA Result and Discussion

• The magnitude of electric field on the vertical blade OA induced by three different lightning stepped leader models, LPL I.

FEA Result and Discussion

• The magnitude of electric field on the vertical blade OA induced by the tortuous lightning stepped leader models, LPL I, LPL II, LPL III.

Reliability Analysis of Composite Wind Turbine Blades

 The values of the peak current follow the log-normal distribution

Estimation of Breakdown Strength and Safety Factor

Dielectric breakdown strength of composite wind turbine blades

$$E_b = TI \cdot c_1 + c_2 / t,$$

- TI tracking index is highly dependent on the fiber orientation, fiber and matrix properties, surface defects and wide erosions.
- TI is not deterministic
- Dielectric breakdown is also dependent on the temperature
- $\Box E_b \text{ is considered only a function of laminate thickness } t.$

The Result of Reliability Analysis

• The average safety factor on the vertical blade OA induced by three different lightning stepped leader model considering the uncertainty of the peak current.

Design Optimization¹

- Optimization Design Considering Lightning Strike Damage
- Design variables laminate thicknesses

¹ W. Hu, W. Zhao, Y. Wang, Z. Liu*, J. Cheng*, and J. Tan, 2019, "Design Optimization of Composite Structures Considering 15 Tortuous Lightning Strike and Non-Proportional Multi-Axial Fatigue Damage", Engineering Optimization, accepted.

Zhejiang University

Design Optimization¹

Optimization problem formulation

Minimize $C(\mathbf{d}) = \left(c_{QQ1} \sum_{i}^{12} m_i^o \frac{d_i}{d_i^o} \right) / C^o$ Subject to $G_i(\mathbf{d}) = 1 - L_i(\mathbf{d}) = 1 - \frac{E_{bi}(\mathbf{d})}{E_i} \le 0, \ i = 1, 2, ..., NL$ Lightr

Lightning Constraints

$$G_{j}(\mathbf{d}) = D_{20year}^{j}(\mathbf{d}) - 1$$
Fatigue Constraints
$$= 52560 \times 20 \times \sum_{i}^{12} \sum_{j}^{50} \overline{P}_{VI}^{i,j}(v_{10}^{i}, i_{10}^{i}) D_{10}^{i,j}(\mathbf{d}, v_{10}^{i}, i_{10}^{i}) - 1 \le 0, \ j = 1, 2, ..., NF$$

$$\mathbf{d}^{L} \leq \mathbf{d} \leq \mathbf{d}^{U}, \quad \mathbf{d} \in \mathbb{C}^{NDV}$$

¹ W. Hu, W. Zhao, Y. Wang, Z. Liu*, J. Cheng*, and J. Tan, 2019, "Design Optimization of Composite Structures Considering 16 Tortuous Lightning Strike and Non-Proportional Multi-Axial Fatigue Damage", Engineering Optimization, accepted.

THANK YOU Q & A